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Exponential Fitting of Matricial Multistep Methods 
for Ordinary Differential Equations 

By E. F. Sarkany and W. Liniger 

Abstract. We study a class of explicit or implicit multistep integration formulas for 

solving N X N systems of ordinary differential equations. The coefficients of these 

formulas are diagonal matrices of order N, depending on a diagonal matrix of param- 

eters Q of the same order. By definition, the formulas considered here are exact 

with respect to y -- Dy + ?(x, y) provided Q - hD, h is the integration step, and 

P belongs to a certain class of polynomials in the independent variable x. For arbi- 

trary step number k > 1, the coefficients of the formulas are given explicitly as func- 

tions of Q. The present formulas are generalizations of the Adams methods (Q = 0) 

and of the backward differentiation formulas (Q = + -o). For arbitrary Q they are 

fitted exponentially at Q in a matricial sense. The implicit formulas are uncondition- 

ally fixed-h stable. We give two different algorithmic implementations of the methods 

in question. The first is based on implicit formulas alone and utilizes the Newton-Raph- 

son method; it is well suited for stiff problems. The second implementation is a predic- 

tor-corrector approach. An error analysis is carried out for arbitrarily large Q. Finally, 

results of numerical test calculations are presented. 

1. Introduction. This paper is concerned with a class of integration formulas 
for N X N systems of ordinary differential equations proposed earlier by one of the 
authors [1]. These formulas are of linear multistep type, 

1 1 

(1.1) X cV+ k-1(Q)Ynf+j h _ E +k- 1(Q)yn+I= 0. 
j=-(k-l j=-(k- 1) 

Their coefficients aj(Q) and fj(Q) are diagonal matrices of order N depending on a di- 
agonal matrix Q of parameters of the same order. By the symbol Fk we refer to the ex- 
plicit ("predictor") k-step formula (Ik = 0) and by F* to the implicit ("corrector") 
formula (13k = 0) of the same length. Similarly, Fk and FZ denote generic scalar 
components (rows) of Fk and F*, respectively. By definition, Fk or F* are ex- 
act, for arbitrary fixed Q, when applied to 

(1.2) y'=-Dy + Ob(x,y), 

Received March 12, 1973, revised January 8, 1974. 

AMS (MOS) subject classifications (1970). Primary 65L05, 65D30; Secondary 39A35. 

Key words and phrases. Ordinary differential equations, matricial multistep methods, expo- 

nential fitting, unconditional fixed-h stability. 
Copyright ) 1974, American Mathematical Society 

1035 



1036 E. F. SARKANY AND W. LINIGER 

with Q = hD, provided ?(x, y(x)) is any polynomial in the independent variable x 
of degree < k - 1 or < k, respectively. Each row Fk or FZ depends solely on 
q = hd, where d and q are the corresponding diagonal entries of D and Q, re- 
spectively. Systems of the form (1.2) arise naturally in applications, e. g., in nuclear 
reactor calculations [2]. The approach taken in this paper is related to those of Cohen 
and Flatt [3] and of Guderley and Hsu [4]. 

Any N x N system 

(1.3) y' = f(x,y) 

takes, of course, the form (1.2) if we let 0b = Dy + f. However, as one would expect, 
the formulas considered here lend themselves particularly well to problems in which f 
is in some sense small compared to f or to Dy. Even so the present formulas remain 
meaningful and competitive with well-known conventional methods when parametrized 
by Q = hD, D # D, rather than by Q. In fact, for q = 0, Fk and FZ are simply 
the explicit and implicit k-step Adams formulas, respectively. Similarly, subject to 
appropriate scaling, FZ for q = + oo is the k-step backward differentiation formula 
(BDF). For arbitrary q, 0 < q < + oo, F~* is exponentially fitted [5] at q = hd. 

Nevertheless, a certain amount of caution is needed in fitting at locations Q # Q, as 
explained in the second-to-last paragraph of Section 3. 

The formulas F* are useful for integrating stiff [6] systems because, when 
fitted at large q's, the F* possess some of the strong fixed-h stability properties re- 
quired to control the corresponding "rapid transients". More specifically, F* is A- 
stable [7] for any q, 0 q < + oo. F is A-stable for any q, 2 < q ? + oo. F 

is A(cx)-stable [8] and stiffly stable [9] for any q > 5. For arbitrary k, F* is 

A.,-stable [10] for any sufficiently large q. On the other hand, when fitted at suf- 
ficiently small values of Iq I, Fk and F are stable [11] for arbitrary k and thus 
well suited for treating nonstiff components. More specifically, F* is stable for all 
q, 0?q <'?0 . 

If the implicit formula F* is applied to (1.2) or (1.3), a set of algebraic equa- 
tions, in general nonlinear, must be solved at every time step. It has been found [12] 
that, in dealing with stiff problems, the Newton-Raphson (NR) method is useful for 
accomplishing this task. The iteration can be started, e. g., from a first guess obtained 
by polynomial extrapolation from previous solution values. * With a sufficiently accu- 
rate first guess, only one or two NR steps need to be carried out to make the stopping 
-error of the iteration compatible with the local truncation error [13]. The fixed-h 

*Obviously, with large integration steps, this technique is meaningful primarily during the 

asymptotic phase of the solution; i. e., after the stiff components have been damped out. During 

the initial, transient phase, it is appropriate to use small integration steps to sample the rapidly 

varying solutions. 



MATRICIAL MULTISTEP METHODS 1037 

stability analysis of the formulas FZ*, k > 1, given in this paper remains valid even 
when we use one single NR iteration step. The reason for it is that this analysis is 
carried out relative to a linear test equation [7], 

(1.4) y' = xy, X = const, 

and that for linear equations the NR method converges in one step. 
Some iterative methods of solving the difference equations other than the NR 

technique are sensitive to stiffness and in its presence become inefficient. This is the 
case, e. g., for the straight Picard iteration [12] . Similarly, as one can deduce from 
the results of [4], it is not recommendable to use finite predictor-corrector (PC) algo- 
rithms in solving stiff problems because, with such algorithms, the unconditional 
fixed-h stability properties of the F* are lost [12]. This is, of course, due to the 
explicit character of such finite PC methods [7]. However, as mentioned in the last 
section of this paper, exponentially fitted, finite PC methods are useful for solving 
nonstiff problems with relatively large integration steps. 

A class of parametrized multistep methods similar to the one considered here is 
described in [14]. Those methods have step number k and order of accuracy p = 2k, 
and are said to be A-stable. For k > 1 this contradicts the well-known constraint 
p < 2 for A-stability [7]. The discrepancy stems from the fact that in [14], as well 
as in [15], the term A-stability is, somewhat misleadingly, used to identify a much 
weaker stability property than in [7]. In its original spirit, this term was used relative 
to an integration formula with fixed coefficients, applied to the test equation (1.4) with 
arbitrary complex X, Re X < 0. Similarly, in the present paper, fixed-h stability analy- 
sis is carried out for given fixed values of d or q, and thus fixed coefficients, but 
for an arbitrary complex X which varies independently of d. As opposed to this, the 
term A-stability in [14] and [15] means fixed-h stability for any X, ReX < 0, of a 
parametrized formula whose coefficients, for each X, are exponentially fitted at Xh. 
In other words, the results of [14] and [15] are restricted to the special case d = X. 

The outline of the present paper is as follows: In Section 2 we give explicit ex- 
pressions for the coefficients of Fk and F* for arbitrary k. We discuss the relation- 
ship between these formulas and Adams methods, BDF, and exponentially fitted form- 
ulas in the sense of [5]. In Section 3 we study unconditional fixed-h stability and 
stability of the formulas F*. Section 4 is devoted to algorithmic aspects. We define a 
one-step Newton-Raphson implementation of F*. Then we analyze the local trunca- 
tion error of the formulas Fk and F*. The result of this analysis is used to define 
PC algorithms. Finally, in Section 5, we describe numerical results obtained for various 
test problems. The performance of the methods considered here compares favorably 
with that of other existing methods. 

2. Derivation of Integration Formulas. A. The analysis of parts A and B of 
this section is presented in more detail in [16]; it is similar to the one given in [17] 
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Let {xn}, xn = nh, n = 0, 1, , h > 0. Equation (1.2) can be converted into 

an integral equation, 

(2.1) y(xn+1) = e hDy(xn) +?Xn+l e-(xn+l-x)DO(x, y(x))dx, 
xn 

where xn is fixed, Xn + 1 represents the independent variable, and h = xn + 1 - Xn. 
With (2.1) we can associate a class of linear multistep formulas. To do this we approx- 
imate ?(x, y) by a polynomial in x and evaluate the integral in closed form. If the 

polynomial is defined by Lagrange interpolation through n -i = (Xn- i, - d) i = 0, 

1, -., k-1, k 1 1, this procedure results in a k-step formula Fk of explicit or 

predictor type. If, on the other hand, Lagrange interpolation through On -i+ 1 I i = 0, 
*., k, is used, an implicit or corrector formula F* with the same number of steps 

is obtained. 
In order to derive Fk* we use Newton's backward difference formula [18] to 

fit a polynomial ?b(x) through On-i i = 0, , k - 1. If in (2.1) we replace b by 
b we obtain the difference form of Fk* 

k- 1 

(2.2) Yn+ 1-e-Qyn-h E GV'n 1=?, k > 1, 
i=o 

where V' denotes the ith backward difference, Q = hD, and 

(2.3) Gi= (-iJ e-('-t)Q( )d, i = 0, 1, 

Upon evaluation of the integral [19] this yields 

(2.4) Gi= L 4,1Q(i+'1)-e-Q Z ti.QJ+ )I i>0 
j=0 j-O 

where 

(2.5) 1j = Yij i O O j <i, 

Ii (2.6) tij = i! Zll!/(l - )!, O < j < i, 

and where the yij, i > 0, 0 < j < i, are defined by 

(2.7) ( - i! Y iit i > 0, 

with ? = 1- . Obviously, Tho = 71 0= 1 and y, =--1. It is easy to show 

that the yij satisfy the recurrence relations 

1i+1,0 = (i+ ? 7is 5 

(2.8) Yi+1i+I =( yii, , 1 ?1 

,Yi+ 1, j =-( + I ),ij - 'i,j -1 I < j < i 
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Note that 

(2.9) Z'jy1=O, i>1, 
Ij- 

which follows from (2.7) for t = 1. From (2.9) it follows that i O = 0, i > 1. 

To transform Fk into ordinate form, we make the substitution 

Vzin O ,( ~t)n-Jo i = O. 1, *- 

This yields 
k- i *-1 

{2*]LO) Yn+ -e Qn h E Bk-l,iq~n- i ? ki > 
i= 0 

where 

Bij = -l)j E (] GI 
l=1 

(2.11) 
i ~~~~~~~~~~~~i 

= aj ,uIjQ-(l+l)-e-Q a viilQ-(+ l), i > 0, 0 j i, 
1=0 1=0 

and where 

(2.12) = 
4 

(-)' O <j <i, O <l <i, 
{ V~~ijl r=max(jl) ( fl 

meaning that ji and v are associated with and #, respectively. 

B. An analysis very similar to the one given above for the formulas Fk can be 

carried out for the F%. All quantities associated with these implicit formulas are so 

identified by asterisks. The difference form of F* is 
k 

(2.13) + 1 e eQyn -h a Gi ViOni = 0, k > 1, 
i= 0 

where 

(2.14) 

g*Q-(j+ l) - e- E Q-(il ), i = 0, 1, *. 
j=o 0 P 

Here 

(2.15) , O 0j i, 

and it is easy to show that the quantities zyr. which are defined by the relation 
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(2.16) F, i ! in i > o, I ! j2 0 i 

satisfy 'yi = for all i, j. By definition, * = 0 for i > 2. 
The relation (2.13) is equivalent to 

k 

(2.17) Yn+ 1- e Qyn h E Bki jn+ 1 -= 0, ki > I 
i-o 

the ordinate form of F*, where 

(2.18) B-. (- G) i>0, 0 6 ? i. 

The relationship (2.18) between the B* and G7 is the same as that between the B 
and GI, respectively. The equations (2.11) and (2.12) thus remain valid between the 
"starred" quantities. 

In the limit where a component q of Q tends to zero, the calculation by the 
closed expressions given in this section, of the components gi(q) and g4*(q) of G1(Q) 
and G*(Q), respectively, is affected by roundoff errors. In this limit it is preferable to 
compute the quantities gi and g* by power series expansions as mentioned in Sec- 
tion 4 below. 

C. The formulas considered in this paper are generalizations of conventional 
Adams formulas. More specifically, in the limit q -e 0, Fk or FZ tend to the explicit 
or implicit k-step scalar Adams formula, respectively. In fact, it is shown in Section 4 
that, if q is treated as an independent, constant parameter, the local truncation error 
of F* is qg*+1hk+ly k ~l) +O(hk+2). Therefore, for q 0, the order of accu- 
racy [20] of F* is p = k + 1. Also, for q = 0, we have f = y' according to 
(1.2) and thus FZ is of Adams type; i. e., it involves the two leading terms only of y. 
Because of uniqueness [21], this formula is, in fact, the well-known k-step implicit 
Adams formula. A similar argument shows that, for q = 0, the formula Fk is the 
explicit k-step Adams formula of order p = k. 

Now consider the limit q -> + ??. Here, if we neglect exponentially small terms 
versus negative powers of q, we find that g = Oq = q and 4 = .I41q2 + 
O(q-3), i > 1. Therefore, if we let 

k 
*,= X 1, 

=-1 

0k 1YI E /* ( 51 1 6j< k, 

and if by bi4 we denote a generic diagonal component of B* , we have 

b* -q-' + ?* q-2 + O(q-3), 

b q + O(q3), 1 < j < k. 
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Thus, since h+11 _ hyn1 + qyn , one finds 

b*,Ohfn+l =yn+l + 0*oq- Yn+ 1 + hqlyn'l + ?O(q-2), 

b*hf _0*4-y +O(q2)- 1 j < k, 

and, after multiplying the formula F* through by q, this formula, in the limit 
q -? + 00, becomes 

k 

(2.19) CEk k-jyn + 1j hyn?+ -?, 
j-0 

where the coefficients c,, i = 0, , k, depend of course on k. Formula (2.19) is 
of BDF type; i. e., it contains only one single y'-term, the leading one. But for any 
q $ 0 the truncation error of F * given above is O(hk+ l), i.e., F, has order 
p k. Again by uniqueness [211, the formula (2.19) is thus identical with the stan- 
dard k-step BDF, normalized to ok = 1. 

Finally, by a similar argument as in the case q -* + oo, one concludes that for 
any q, O < q < + oo, the component formula F, is. identical with the general 
k-step formula fitted exponentially at q in the sense of [5]. 

3. Stability Analysis. In proving A-stability [7] for linear multistep formulas 
we may, according to [221, test the two sufficient conditions Ni: I vi I < 1, i 1, 
*^- k, where vi are the roots of a(w), and N2: Re [p(w)/a(w)] > 0 for all w, 
I w I = 1. Via the transformations w = w(z) = (z + 1)I(z - 1), r(z) = (z - 1)kp(w(z)), 
and s(z) = (z - l)ka(w(z)), condition NI takes the form Ni': Re si < 0, i = 1, 

k, where the s, are the roots of s(z). Ni' can be tested by the Routh-Hurwitz 
theory [231. One writes s(z) = a0zk + bozk-1 + a1zk-2 + -- and denotes by 

ao, bo, co, *-- the entries of the first column of the Routh tableau. Then Ni' is 
satisfied if and only if ao, bow 0o, are all nonzero and of equal sign. In discuss- 
ing fixed-h stability with respect to the test equation (1.4) we use the notation q' = 

Xh, as distinguished from the fitting location, q dh (see second-to-last paragraph 
of Introduction). 

The formula 

(3.1) F1: -yn+yn+l 

-h{[q-1 - (eq _ l)- + [(1 q-l)+(eq- l)-1y'+1}=O 

is A-stable for any q, 0 < q < + oo. In fact, as is shown in [121, the exponentially 
fitted, weighted Euler formula possesses this property and, according to the previous 
section, the latter and F* are equivalent. 

In [51 it is stated without proof that, for 2 < q < + 00, the exponentially 
fitted two-step formula of order p = 2, which is equivalent to 
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F2: [(1 - 2q-1) + e-(1 + 2q-? ?Yn-I + 4[(- 1 + q-1) - e-q-l]yn 

+ [(3 - 2q-') + e-q(- 1+ 2q-?)]Yn+ 

(3.2) -h{[(-q-' + 2q-2) - 
e-q(q-1 + 2q-?2)] y 

? [(4q-' _4q-2) - e-q(2 - 4q -2)Yn 

? [(2-3q-' +2q-2)-e-q(-q-l +2q-2)]yI+1}=0 

is A-stable. Here we give a proof: We find ** ao = g* = [(1 - e-q)/q] > 0, q > 0. 
Let b= q2b0/2 = q - (1 - e-q), where bo = 2(go +g). Then )-(q) > 0, 
q > 0, and bo(O) 0. Thus bo(q) > 0, q > 0 = bo(q) > 0, q > 0. Finally, let 
cO = qcO = (2 -q) [(2 -q) -(2 +q)e-] where cO = a = gO + 2g* + 4g2*. We 
have [ <2-q<0,q>2, andthus c0>o,q>2, whichimplies co>Oq>2. 
Therefore Ni' is satisfied for q > 2. Condition N2 requires that P(Q, q) = 

2y(q) (Q - 1)2 ? 0, - 1 < t < 1, where 

y(q) = q 57y(q)Y2(q), yj (q) = ?2 [(2 - q) - (2 + q)e-q], 

y2(q) = (- 2 + 3q - q2) + (2 - q)e-q. 

Asstatedabove, y1(q)>0 for q>2. But 72(q)<-q2? 3q-2=(q-2)(1-q) 
< O. q > 2; thus y(q) > O. q > 2, and PQt, q) > O for all #,-1 < 1, q > 2, 
which completes the proof of A- stability. 

The formula 

F*: [(1 1- 12q-' + 6q-2) -e-q(2 -6q-' + 6q-2)]y 

? [(- 18 + 30q- 1 - 18q-2) - e-q(3 + 12q-' - 18q-2)] Yn 

+ [(9 - 24q- 1 + 18q -2) - e-q(- 6 - 6q- 1 + 18q -2)] Yn- 1 

+ [(- 2 + 6q-1 - 6q-2) - e-q(l - 6q 2)]Yn-2 

(3.3) - h{ [(6 - 1 lq- 1 + 12q-2 - 6q-3) - e- q( 2q-1 + 6q-2 - 6q 3)]Yn+l 

? [(18q1 - 30q -2 + 18q - 3) - e-q (6 - 3q- 1 - 12q-2 + 18q 3)] Yn 

+ [(- 9q- 1 + 24q-2 - 18q -3) - e-q(fq- I + 6q-2 - 18q-3)]y2_ 1 

[(2q -1 - 6q -2 + 6q-3) - e-q(- q-1 + 6q 3)] Yn-2} 0 

is A. -stable [10] (i. e., Ni' is satisfied) for q > 5. To prove it we show that ao, 
bo, co = a1 -(aob1/bo), and do = b, are nonzero and of equal sign for q > 5. 
First aO = 6(1 - e-q) > 0 for any q > 0. Then 

bo (18 - 12q- 1) + (- 6 + 12q-d)e-q > (18 - 12q-e1) + (- 6 + 12qresec 12 >i 

**By gi and gi* we denote generic diagonal entries of Gi and Gl* respectively. 
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for q > 2. Next write do = 2q-3 [p1(q) + p2(q)e-q]. One finds p2(q) > 0 for 
q > 2, p2(2) > 0, and thus p2(q) > 0, q > 2. Similarly, p' (q) > 0, q > 4; 

p1(5) > 0, and thus p1(q) > 0 and do > 0 for all q > 5. Finally subject to con- 
dition bo > 0 which is satisfied for q > 2, we have 

co > 0 ? albo - aob1 = q2N(q)/48 > 0, 
where 

N(q) = (6q2 - 13q + 9) + (8q - 12)e-q - (q - 3)e-2q. 

For q > 3, 8q - 12 > 0 and q - 3 > 0. Hence, 

N(q)> (6q2 - 13q + 9) - (q - 3) = 6q2 - 14q + 12 > 0 

for all q > 5, which completes the proof that F* is A.-stable for q > 5. 
For q > 5, F3 possesses other properties of strong fixed-h stability, as a nu- 

merical investigation of the relevant conditions showed. In particular it was found 
that F3 is A(x)-stable [8] for a < ao(q). The maximum angle ao(q) increases 
from ; 84.40 (1.4731 in radians) for q = 5 to ; 860 for q = + oo, the latter 

representing the three-step BDF [9], [15]. Furthermore, F3 is A(a)-stable [10] (i.e., 
fixed-h stable for Re q' < - a) for any a > ao(q). We found that ao = .22435 for 
q = 5, that ao(q) is monotone decreasing and, for q = + oo, ao = 1/12 = .08333 
[9]. Finally, for q = 5 and c = 30.708, F* is A(r, c)-stable [10] (i.e., fixed-h 
stable in Iq' - c I > r) for any r > ro= 31.14. The center c was chosen in such a 
way that, approximately, the circle Iq' - c I = r is tangent to the image curve of 

IwI = 1 by the map q'(w) = p(w)/a(w) at its intersection point with the imaginary 
axis (so as to reduce to a "minimum" the area cut out of the left half q'-plane by the 
circle). Again, as q increases from q = 5 the A(r, c)-stability constraint becomes 
weaker. For example, the BDF (q = + 00) is A(r, c)-stable with c = 6 for any 

r > ro= 6.31 [10]. In Figure 1, the image curve by q'(w) of Iwl= 1, is plotted 
for q = 5, 6, and + oo and the bounds of A(o)-, A(a)-, and A(r, c)-stability are 
shown for q = 5. 

For q = + oo, the formulas F * are the BDF and are thus trivially A.-stable 
for all k. Because of the continuous dependence of its coefficients on q, Fk(q) for 
any given k must possess this property for any sufficiently large value of q. Simil- 
arly, for q = 0, the formulas Fk and Fk* are Adams formulas which are stable [11] 
(in the limit q' + 0), and even fixed-h stable for a bounded set of values of q'. Fk 

and F must thus be stable for any sufficiently small, nonzero value of q. 
Of course, F(q), which for a large value of q is A. -stable, may not simul- 

taneously be stable for that value of q. A well-known example of this are the BDF 
for k > 7 [9]. Similarly, the stable "near-Adams" formulas Fk(q) and Fk*(q) asso- 
ciated with small values of q are not A.-stable. This lack of uniformity in the stabil- 
ity properties is, however, not a serious drawback for the following reason: In our 
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matricial integration scheme, the stiff component solutions (corresponding to large 
values of q = hd) are treated by row-formulas fitted at large values of q. These 

6 

~~~q5 c 1r 3li* 1; qo6 

5- 

4- 

2- 

8440 

0.224 ~ 12 
Re qt 

FIGURE 1. Stability domains for S3 as a function of q. 

formulas then possess precisely the unconditional fixed-h stability properties needed 
to control the stiff components. On the other hand, the slowly varying (smooth, non- 
stiff) components corresponding to small values of q are treated by Adams-like for- 
mulas fitted at those small values of q. These latter formulas then possess precisely the 
stability-and limited fixed-h stability-properties which are relevant for the smooth 
components. 

As an exception to the lack of uniformity mentioned in the last paragraph, note 
that F* is stable for all q, 0 ? q ? + oo. To show this let p(w, q) be the cubic 
polynomial associated with the a-coefficients of F* and let *** $(w, q) = 
p(w, q)/(w - 1), a quadratic polynomial. Furthermore, let 

r(z, q)= (z - 1)2^((z + l)I(z - 1)) = 2co(q) + 3qcl(q)z + 3q2c2(q)z2 

**By consistency, p(w, q) possesses the linear factor (w-1) for all q. 
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With appropriate normalization, co(q) = (6 - 9q + 5q2) + (- 6 + 3q + q2)e-q, 

cl(q) = (- 2 + 3q) + (2 - q)e-q, and c2(q) = 1 - e- . Now apply the Routh cri- 
terion to i(z, q): First c2(q) > 0 for q > 0. Next, for 0 < q < 3, c' (q) > q > 0, 
c1(O) = O, and thus c1(q) > O for O < q < 3. For q > 3, c1(q) > 2q > 0; thus 
c1(q) > O for all q, O q < + oo. Finally, for q > q1 = (- 3 + ? 33)/2, we have 
- 6 + 3q + q2 > O and co(q) > 6-9q + 5q2 > O. For O < q < q1, 

(q) > (6 - 9q + 5q2) + (- 6 + 3q + q2) [1 - q + (q2/2)] = (q3 + q4)/2 > O 

which completes the proof. 

4. Algorithmic Implementation. 
A. Newton-Raphson Algorithm. Algorithms useful for solving stiff systems are 

generated by applying the Newton-Raphson (NR) method to the nonlinear difference 
equations associated with the formulas F* [12]. The derivation is along the lines of 
[24] and is given in detail in [16]. We give the result of this procedure for k = 3. In 
this case, if a starting guess for the NR method is obtained by quadratic extrapolation 
from preceding solution values, the NR iteration may be stopped after one step [13]. 

Let 
S= B,0, S= - (B*,1 + B + B 

2 =B ,2 +2B3,3, S*=-3 3, 

where the B* i, i = 0, , 3, are (6Q)-1 times the matrix equivalent of the coef- 
ficients 03-i of (3.3), respectively. For the autonomous case of (1.2), the 
one-step NR algorithm for F* is then defined by the following relations. Let 

A-=Vy + V2y, Y+ =Y AY, ?+= 6: ) 

0+= i6(7+) qy = ao/ay; 
compute 6y+ by solving 

(I - hSoqy+)6y+ = - A - (I - eAQ)y h(So - S*q5 - S2*Vq - S*V20); 

correct by 

y-+ = Y+ + ? y+ V2y+ = V2y +?y, Vy+ = Vy + V2y+; 

and reevaluate: 

0+ = O@+), V0+ = 0+ - 0, v2o+ = vo+ - Vo. 

As a starting procedure in conjunction with this algorithm, one may use implicit Runge- 
Kutta methods (see e.g., [25] ). 

B. Analysis of the Local Truncation Error. The error analysis given hereafter is 
similar to that of [17]. However, we recall that our aim is to derive formulas which 
are accurate for sufficiently small values of h4 or of a derivative thereof but for arbi- 
trarily large values of Q = hD. Therefore, in analyzing the local truncation error, it is 
unreasonable to make a complete expansion of this error in powers of h (including 
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the coefficients of the formula via their dependence on Q). Instead we shall adopt 

the point of view that Q is an arbitrarily large parameter which we keep constant in- 
dependently of h. We can, of course, think of this situation as describing a sequence 
of problems in which we simultaneously vary h and D in an appropriate way. 

The formulas we derive hereafter are applicable to the smooth solutions en- 
countered during the asymptotic phase but do not apply to the rapid transients! In 

fact, for constant q > 0 and h -* 0, we have d - + ?? and in this limit the tran- 
sient solutions are not smooth. This is exemplified by the case where ?(x, y) 0, 

y= - dy, and the solution y(x) = yoe-dx for d = + is a step function. 
Consider the linear differential difference operator (with k = p + 1 for given p) 

1 (Q)EI-d 
LP+ 1 = E3 aj+p(Q)Ej -h ? ph+p(Q)Ei dx 

1=-p j- 

associated with FP +1 where E is the shift operator. The order of Lp +2 exceeds 
that of LP+ 1 by one. Therefore, the principal part of the local truncation error of 
L + 1 is the same as that of Lp+1 - Lp + 2 . We find that 

(Lp + 1 - Lp + 2)y(x) = hGp + IV P + 1 [y'(x) + Dy(x)] , 

where we have substituted y' + Dy for b. For a smooth solution y(x) of (1.2), 
this yields 

(Lp+ 1 - Lp+2)y(x) = QGp+ 1VP+ ly(x) + hGp+ 1VP+ ly'(x) 

= h + 1 QG y(p + 1 )(x) + O(hp + 2), 

and, from what we have said, it follows that 

(4.1) Lp+ly(x) = hP+ QGp+1 Y(P+ l)(x) + O(hP+2). 

Therefore, FP+I has order of accuracy p when Q : 0, and p + 1 when Q =0; 

as mentioned before, the latter represents the well-known result for open Adams for- 
mulas. In the general case, the coefficient of the principal error term of Lp+1 is p+1 
QGp +1 according to (4.1). 

The error analysis for F* is analogous to that of p+ I. If (with k p for 
given p) 

L; i=E1 t+~(Q)Ej h ) _)i+-()El d 
(P-1) ~-(-1 d 

is the operator associated with F*, we find that 

L>(x) = hP+ QG* (P + 1 ) ? + O(hP + 2). 

Thus, for Q * 0, F* has order of accuracy p. For Q = 0 we recover the well- 
p 

known result that the p-step closed Adams formula, with which F* is identical in p 

t This remark relates to the footnote of Section 1. 
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this case, is of order p + 1. The coefficient of the principal error term of L* is p 
Cp* = QG+1 

We can now write down approximate expressions for the local truncation errors 
of F and F* by the method of Milne [26]. We define a predicted value Y-+ 
by letting Lp + = O where, at x x _+1, , x, Lp operates on the 
exact solution y(x). One finds that 

(4.2) Cp + 1 Pno+ 1 -Y(Xn+ A) -hP+ 1C C+ lY(P 
+ 1 )(Xn), 

where - denotes equality up to and including O(hP+ 1 ). Similarly, we define a cor- 
rected value yi1 by Lan = 0 where for YX+l we substitute Xn+ -D 

with On+1 =-(Xn+1,Y-n5+1) Then 

(4.3) a[Y 1 -yx+b ~hP+ 1C*iP+ ( ) ?X~~p yn + 1 Y(Xn + 1)] -h + 1 p+ lY(P + 1 )(Xn). 

We can eliminate y(xn+ +1) between (4.2) and (4.3) and solve for y(P+ +)(Xn) 

(4.4) y (+ 1) (xn) = h -(P + 1) [ot-1 Cp+-?* - of*1 C*+ - 1 (y l 1-Y + 1 ) + 0(h). 

Obviously, op + 1 is the identity matrix, whereas 
* 

=I-QB0 

From (4.2) and (4.4), we deduce an estimate for the local truncation error of Fp+ 1 

(4-5) Yn + - Y(Xn +) otp G p+[G;+1 
- p Gp +1]_ l(Ynl+1 Y +1) 

where we have substituted GP+1 = (I + Q)GP+1 for GP+1 and GP + = 
(I + Q)G*1 for Gp*+ 1 * An expression equivalent to (4.5) would be obtained if we 
were to replace G by G and G* by G*. But, as q -> + oo, the quantities G(q) - 
qG(q) and G*(q) qG*(q) tend to finite, nonzero limits as we have seen in Section 
2. On the other hand G - G and G* G* for q -+ 0, and, in this limit, these 
quantities in turn have reasonable limits. Thus, relation (4.5) is in a convenient form 
for computational purposes. 

In a very similar manner as for the formula Fp+ 1 we obtain an estimate for the 
local truncation error of F*. 

(4.6) Yn+ 1 Y(xn+ 1) G p+ 1 Gp+1 ?tpGpull (Yn+ -Yn+1) 
The error estimates (4.5) and (4.6) can be used for step size control or, as in the next 
subsection, for defining modifier formulas associated with the predictor and corrector 
formulas considered above. 

C. Predictor-Corrector Algorithms. The relations (4.5) and (4.6) can be used to 
define modified predicted and corrected values. This is done by letting these modified 
values play the role of Y(Xn + 1) in (4.5) and (4.6), by replacing the - sign of these 
relations by the strict equality sign and, in the modifier of the predictor, by shifting 
the abscissa of (jTO - y') back by h. In this sense we arrive at the following one-step 
predictor-modifier-corrector-modifier (PMCM) algorithm: 



1048 E. F. SARKANY AND W. LINIGER 

1 

(4.7) - 
= eQ + h BP,~ (47) Yn+l QYn + ~i+ p--n-(p-p)--i 

(4.8) Y n+=Y + ?apGp+ 1 [Gp+ 1-ap GP+ 1 ] n+ i-yn+ ) 

(49) 1 e-Q hBp 1 + p-l+in+ -i 

(4.10) Yn+ii =Y++ G? +i [G+ + p +I 1(i?n+ + 1) 

where = ?(x, j), GP+ 1 = (I + Q)GP+ 1, and G* =(I+ Q)G*1 In the 
limit Q -> 0, the component relations of (4.7) through (4.10) become identical with 
Adams PMCM algorithms (see e. g., [27] for the cases p = 2, 3). 

In lieu of the PMCM procedure, it may be advantageous in some cases to use an 
algorithm in which the formulas (4.7) and (4.8) are combined with a number of appli- 
cations of the corrector formula, 

Yn+ 1 =e-Qyn +?h[B 0n+1 + 2 BPiP-Ijn+iI} 
(4.11) j=-(p -2) 

i =1, 2,'', 

where Obl = q5(x, y1) and 0 = ?. The iteration may be stopped when an appro- 
priate measure for the difference between two consecutive corrected values of y be- 
comes smaller than a prescribed threshold. We refer to this as the predictor-modifier- 
iterated-corrector (PMIC) procedure. 

D. Remark. If one tries to compute the quantities G, and Gj* by the closed 
expressions of Section 2 the results, because of numerical cancellation, are strongly af- 
fected by rounding errors in the limit where a component q of Q satisfies IqI < 1. 
It is preferable in this case to compute such components of Gi or G by power 
series expansions [16]. It was found by numerical experimentation on an APL system 
using 56-bit hexadecimal arithmetic, that in computing the quantities g* 0 < i < 3, 
a natural separation value qS, between the range 0 < q < q, in which the series 
evaluation should be used and the range q, < q in which the closed expressions seem 
more accurate, is q, = 0.0085. 

5. Numerical Results. The Newton-Raphson algorithm associated with Ft-re- 
ferred to as S3 in the following-was applied' to two stiff test problems. The first of 
these is (a slightly rescaled version of) the first example listed in the survey paper of 
Bjurel et al. [28, Section 4, p. 1], and is due to Fowler and Warten [29]. This prob- 
lem, which will be referred to as PI, is defined by the equations and initial conditions 

P = 2000y, + 1000Y2 + 1000, Y1(O) = 0, 
Pi < 

tY2=Y1 -Y21 Y2(0) = 0. 

Its exact solution is given in [16]. Near x = 0 the solution to P1 has a "boundary 
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layer" in the yj -component, of amplitude 0.5. To avoid this area, the numerical 
integration was actually carried out in the interval 1 < x < 4, using the exact solution 
values at x0 = 1, x1 =1 + h, and x2 = 1 + 2h as starting values. The relative 
accumulated truncation error in absolute value was computed and maximized over the 
abscissa values xi = 1 + i x 0.6, i = 0, -* , 5. The second component (the larger 
one) of this error is plotted in Figure 2 as a function of h. The curve labelled S3 repre- 
sents the results by the third order algorithm S3 using di = 2000 and d2 = 1. For 

comparison, the results of the third order algorithm A3 of [24] is plotted under this 
label, and the results obtained by the BDF with k = p = 3, implemented as S3 with 

di = d2 = 105 (in place of + oo), is plotted as curve BDF3. We find that, for this 
linear problem with constant coefficients, the algorithm S3 is considerably more accu- 
rate than either BDF3 or A3, despite the fact that the off-diagonal terms are not small 

compared to the diagonal ones. It should be remembered, however, that A3 was de- 
signed to be A-stable whereas S3 is not A-stable. The order of accuracy reflects itself 
in the slope of the approximately straight-line curves. The theory predicts that the ac- 

cumulated truncation error is O(hP), p = 3. In accordance with this the three curves. 
have a slope of - p - 3 in this manner of plotting. 

10-3 _T-9 - 

A3 

10-7-\ 

i- \ 

Uj~~~~O 

33 

1-6 0 I QF7 

1 01 001 

F h A 

FIGURE 2. Accumulated truncation errors for test problem PI. 
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As a second test problem we solved the nonlinear system [24] 

0.01 - [1 + (1000 + Y1) (1 + Y1)] (0.01 + y1 + Y2), 
P2 

P Y 0.01 -(1 + y2) (0.01 +Y ) 

from x = 1 through x = 81. As starting values near x = 1 we used values of the 
"exact" solution defined by Y1 (0) = Y2(0) = 0 and computed by the well-known 
fourth-order Runge-Kutta method with an extremely small step, h = .002. The eigen- 
values are X1i -981, X2 -2x105 at x=1, and Xi t-185, X2 10-3 
at x = 81. The numerical results of applying the algorithms S3 with di = 1011.01 
and d2 = 1, A3, and BDF3 to P2 are plotted in Figure 3 in a similar manner as 
for PI in Figure 2. Again the algorithm S3 proves to be more accurate than A3 
and BDF3, although the difference in this nonlinear problem is not as great as in PI. 

For both problems, calculations have been carried out with values of D other 
than the two associated with the curves labelled A3 and BDF, respectively. The 

1 0A3 

10-5 

S33 
10-6 

BDF 3 

10-7 ~ ~ ~ ~~1 

FIGURE 3. Accumulated truncation errors for test problem P2. 

esults generally showed a low sensitivity to reasonable changes of D within the sta- 
)ility constraints given in Section 3. 
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The third-order PMCM and PMIC procedures were tested on five stiff or diagonally 
dominant, nonstiff problems [16]. In summary, the following observations were made 
in these tests: As far as stiff problems are concerned, the PMIC procedure yielded use- 
ful, though somewhat erratic results even with relatively large integration steps. Instead, 
as expected, open methods such as PMCM, Adams, and explicit Runge-Kutta procedures 
broke down for all but the smallest step sizes used. With small integration steps, PMCM 
appeared to be more accurate than the corresponding third-order Adams procedure 
(which is the special case of PMCM fitted at Q = 0), or the standard fourth-order 
Runge-Kutta method. Similarly, for nonstiff problems and for intermediate step sizes 
at which Adams and Runge-Kutta are still stable, the exponentially fitted algorithms 
PMCM and PMIC proved to be more accurate than the former methods. As one might 
expect, the gain was greater in linear than in nonlinear problems. 
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